
B.Comp. Dissertation

Optimisations for Dynamic Languages

By

Ooi Ken Jin

Department of Computer Science

School of Computing

National University of Singapore

2024/2025

B.Comp. Dissertation

Optimisations for Dynamic Languages

By

Ooi Ken Jin

Department of Computer Science

School of Computing

National University of Singapore

2024/2025

Project No: H341100
Advisor: Senior Lecturer Stefan Marr & Asst. Prof. Manuel Rigger
Deliverables:

Report: 1 Volume
Source Code: On GitHub

Abstract

Dynamic languages like Python are often associated with inefficient execution. However, de-
pending on their implementation, this is not always the case. Historically, language implemen-
tations of Smalltalk, Forth, Self, JavaScript, Ruby, Lua and even alternative implementations
of Python like PyPy and GraalPy have significantly more efficient execution performance than
initially anticipated. In this project, we explore optimisations for CPython—Python’s reference
implementation. However, optimising Python’s reference implementation—CPython—is bound
by compatibility and maintainability constraints. The Python community for example, values
CPython’s C extensions, which tightly integrate with the implementation and thus limit what
changes can be made for performance to CPython. In this report, we implement and evaluate
optimisations for CPython with these constraints in mind. Among these experiments, the tail
calling interpreter produces the most promising results, with an overall mean 1.5% speedup on
the pyperformance benchmark suite, and has already been merged into CPython.

Subject Descriptors:
Software and its engineering →

General programming languages; Just-in-time compilers.

Keywords:
Dynamic Languages, Program Analysis, JIT Compilers

Implementation Software and Hardware:
Ubuntu 22.04 (Jammy Jellyfish), C, Python, Intel Core i7-12700H

Acknowledgement

I would like to thank my advisors Dr. Stefan Marr and Dr. Manuel Rigger for their guidance

throughout this project. I would also like to thank my family for their continued support. Last,

but not least, I thank the Python/CPython community, including the Faster CPython team

at Microsoft and the Python Runtime Team at Meta. I specifically want to thank Michael

Droettboom from Microsoft as well, for entertaining all my benchmarking requests.

For this report’s LATEX template, I thank the GitHub users quarbby, pan-long, stbman,

and Assoc. Prof Ooi Wei Tsang.

This report also uses content either in part or whole from my Final Year Project

Interim Continual Assessment Report. That report and this one are fully my own work,

bar sections noted as the work of others, and benchmarking help from the Faster CPython team

at Microsoft.

List of Figures

4.1 Portion of time spent in executing various parts of CPython for benchmarks (Part
1). Credits to CPython performance engineering team at Microsoft for this chart 21

4.2 Portion of time spent in executing various parts of CPython for benchmarks (Part
2). Credits to CPython performance engineering team at Microsoft for this chart 22

5.1 pyperformance relative speedup tail call interpreter versus CPython (Part 1) . . 31
5.2 pyperformance relative speedup tail call interpreter versus CPython (Part 1) . . 32
5.3 Compilation time for full LTO build on different configurations 33
5.4 Execution times for no inlining versus inlining in CPython’s JIT compiler on a

small test program . 34
5.5 Execution times for no inlining versus inlining in CPython’s JIT compiler on

spectral norm . 36
5.6 pyperformance relative speedup function entry tracing versus CPython (Part 1).

Credit: Microsoft Faster CPython Team. 39
5.7 pyperformance relative speedup function entry tracing versus CPython (Part 2).

Credit: Microsoft Faster CPython Team. 40
5.8 pyperformance relative speedup method JIT compiler versus CPython (Part 1).

Credit: Microsoft Faster CPython Team. 41
5.9 pyperformance relative speedup method JIT compiler versus CPython (Part 2).

Credit: Microsoft Faster CPython Team. 42
5.10 pyperformance relative speedup baseline JIT compiler versus CPython (Part 1).

Credit: Microsoft Faster CPython Team. 44
5.11 pyperformance relative speedup baseline JIT compiler versus CPython (Part 2).

Credit: Microsoft Faster CPython Team. 45
5.12 Execution times for no supernodes versus supernodes in CPython’s JIT compiler

on spectral norm . 46

iv

List of Tables

v

Table of Contents

Title i

Abstract ii

Acknowledgement iii

List of Figures iv

List of Tables v

1 Introduction 1
1.1 Project Objectives . 2

2 Background and Challenges 3
2.1 CPython’s Inefficiency . 3
2.2 The C API and Compatibility . 4
2.3 Maintenance Burden Concerns . 5
2.4 The Challenge . 5

3 Background: Just-in-Time Compilers and CPython 6
3.1 Method-based . 6
3.2 Trace-based . 7
3.3 Basic-Block at a Time Compilation . 8
3.4 Meta-tracing . 8
3.5 Lazy basic block versioning . 10
3.6 Partial Evaluating Interpreters . 10
3.7 The CPython Virtual Machine . 11

4 Exploring optimisations for CPython 14
4.1 Tail Calling Interpreter . 14

4.1.1 Implementation . 14
4.2 Partial Evaluation of Traces . 18

4.2.1 Implementation . 18
4.3 Improving JIT Compilation by Tracing Function Entry Points 20
4.4 Method JIT for CPython . 23

4.4.1 Implementation . 23
4.5 Baseline JIT for CPython . 24

4.5.1 Implementation . 25
4.6 Superinstructions/Supernodes . 26

4.6.1 Implementation . 26

vi

5 Evaluation 28
5.1 Experimental Setup . 28

5.1.1 Performance . 28
5.1.2 Maintainability . 29
5.1.3 Compatibility . 29

5.2 Tail Calling Interpreter . 29
5.3 Partial Evaluation of Traces . 33
5.4 Improving JIT Compilation by Tracing Function Entry Points 38
5.5 Method JIT For CPython . 38
5.6 Baseline JIT for CPython . 43
5.7 Superinstructions/Supernodes . 43

6 Conclusion 48
6.1 Contributions and Impact on the Python/CPython Community 48
6.2 Future Work . 50

References 51

A Code A-1

vii

Chapter 1

Introduction

Dynamic languages are widely-used, with JavaScript and Python being one of the most popu-

lar languages (Jansen, 2025) (StackOverflow, 2024). Making dynamic languages more efficient

is thus a worthwhile endeavour as any percentage speedup in their implementations would

mean knock-on improvements in efficiency for companies and businesses using them world-

wide. For example, Instagram’s backend is written in Python (Instagram, 2017), and reportedly

YouTube (van Rossum, 2006) as well. We focus on CPython, the reference implementation of

Python, one of the most widely-used dynamic languages. In this report, we identify the main

problem hampering efficiency improvements in CPython: the trilemma of performance, com-

patibility, and maintainability. Improving all three together is challenging in the context of

CPython; often improvements in one require sacrificing another. We experiment with multiple

optimization approaches with these factors in mind. Namely, we try a tail calling interpreter,

partial evaluation of traces, improving Just-in-Time (JIT) compilation by tracing function en-

trypoints, a method JIT compiler for CPython, a baseline JIT compiler for CPython, and

superinstructions for CPython’s JIT compiler. Among these experiments, the tail calling in-

terpreter produces the most promising results, with an up to 6% speedup on our benchmark

suite in a few benchmarks, with no loss of compatibility nor worsening maintainability. The key

insight from our experiments is that the trilemma of performance, compatibility, and maintain-

ability is not an impossible one to solve. With the help of modern tools like Domain Specific

Languges (DSL), these problems are addressable.

1

1.1 Project Objectives

• Evaluating promising dynamic language optimization technique(s) in fork(s) of CPython.

This includes optimisations such as switching the interpreter implementation to use tail

calls with special calling conventions, increasing traces executed in the Just-in-Time (JIT)

compiler, partial evaluation of traces, etc.

• A non-exhaustive examination of CPython’s compatibility constraints which limit alterna-

tive, more efficient, implementations. This includes Application Programming Interface

(API) compatibility and ABI (Application Binary Interface) compatibility, as well as

language-level backward compatibility.

• A brief explanation of CPython’s maintainability constraints. We explore the human costs

of maintaining extra optimisations for CPython.

• A literature review of the state of dynamic language optimising runtimes. This includeds

lazy basic block versioning, meta-compilation, tracing and method-based JIT compilers.

2

Chapter 2

Background and Challenges

CPython is Python implemented in C. CPython was originally written by Guido van Rossum

in the late 1980s. CPython today has an extensive library ecosystem in the form of the Python

Packaging Index (PyPI). This includes popular machine-learning libraries like PyTorch and

Tensorflow, and web frameworks like Django.

Optimising CPython is a careful play between compatibility, maintainability and perfor-

mance. This will be elaborated below.

2.1 CPython’s Inefficiency

CPython 3.10 is known to be inefficient (Zhang, Xu, Zhang, & Xu, 2022). Zhang et. al.

investigated inefficiency coming from a few places (Zhang et al., 2022). Namely “name access,

dynamic typing, garbage collection, and opcode dispatch”.

To elaborate more, name access refers to Python’s dynamic scoping rules, which force a

lookup on most variables in versions of CPython prior to 3.11. Python is also dynamically

typed, which requires type checks on most operations, and requires boxing values for numeric

types as well. Due to supporting automatic cyclic memory reclamation, CPython also includes

a garbage collector. Finally, CPython’s stack-based bytecode virtual machine architecture re-

quires decoding and dispatching each opcode in the bytecode instructions. All these contribute

some overhead.

3

2.2 The C API and Compatibility

Libraries can interface with the CPython interpreter using a C foreign function interface, gen-

erally termed the C Application Programming Interface (API). However, one pitfall of the

CPython C API is that it naturally evolved with CPython and its needs. Alternative im-

plementations like PyPy or GraalPy either suffer heavily reduced performance (Bernstein &

Bolz-Tereick, 2024) or cannot run at all with C API extensions. For example, PyTorch, one of

the most popular machine-learning libraries, cannot run with PyPy at the time of writing (Lop-

uhin, 2019), due to PyTorch’s usage of the internal C API. The CPython C API is governed by

strict backwards compatibility policies. Deprecations often need to last at least two CPython

release cycles (Peterson, 2009), often meaning at least two years of waiting before a C API can

be changed. This means changes to the C API have to be done incrementally and over a long

period of time. Changes to the C API also mean directly breaking multiple extension packages,

and possibly leaving unmaintained packages behind.

These strict backward compatibility policies also govern Python features itself, not just

the CPython C API. This includes even implementation details of CPython which may be

inadvertently exposed to the users. For example, sys. getframe (Python, ndb) is a CPython

internal function that allows users to traverse the stack frame. This hinders optimisations such

as function inlining, where a stack frame no longer exists. Exposing these implementation details

means much of the internals of CPython cannot be easily changed for better performance, as

that might break user code.

These compatibility concerns plague even external tooling. For example, we previously tried

implementing in CPython (and will try again in this project) function inlining—a common

optimization. This was met with other CPython maintainers voicing their concerns on breaking

out-of-memory profilers that take snapshots of CPython memory and parse them (Ooi, 2024b).

This means even external tooling for CPython are what CPython maintainers consider in these

compatibility constraints.

4

2.3 Maintenance Burden Concerns

Up until recent years, CPython was maintained mostly by volunteer (unpaid) maintainers. In

2019, CPython core developer Victor Stinner calculated that there were the equivalent of 2 full

time engineers working on CPython (Stinner, 2019).

This number has improved in recent years, with Meta sponsoring work on free-threading,

and Microsoft sponsoring work on improving CPython’s performance. Yet, maintenance burden

is still a chief concern when working on CPython, as the majority of contributors are still

unpaid. Even sponsorship does not mean enough human capital to tackle problems such as

CPython’s performance. For example, by our own estimations, there are only 2 full time

engineers working on CPython’s Just-in-Time (JIT) compiler, and 3 part-time engineers. This

pales in comparison to projects like V8 (the Chrome browser’s JavaScript engine), which had

at least 8 people working full-time on it from the start (from our personal correspondence with

engineers working on JavaScript runtimes).

These maintenance burden concerns mean solutions that are implemented in CPython need

to be easily understood and debuggable, and not increase maintainer burden. Said solutions

also cannot break backward compatibility, in the C API or otherwise.

2.4 The Challenge

Optimising Python is thus a difficult trilemma. With all 3 factors — efficiency, compatibility,

and maintenance burdens requiring consideration. Our evaluation and experiments are thus

evaluated with these factors in mind.

5

Chapter 3

Background: Just-in-Time

Compilers and CPython

Just-in-Time (JIT) compilation, also known as dynamic or online translation, compiles program

code on-the-fly to machine code (Aycock, 2003). This is a common technique for optimising

dynamic language implementations, as seen in JavaScript, Ruby, and Lua. We must first do

a brief review of the current literature to understand JIT compilation to understand how to

tackle its optimisations.

3.1 Method-based

Method-based JIT compilation involves compiling methods or functions which are executed

frequently to machine code. Though arguably one of the simplest methods conceptually, this

is also one of the most common techniques used today. It is found in Java (HotSpot) (Oracle,

nd), JavaScript (V8 in the Chrome browser) (Google, nd), and Cinder (an implementation of

Python by Meta) (Meta, nd). We found references to method-based JIT compilation dating

back to the 1980s (Bush, Samples, Ungar, & Hilfinger, 1987).

Method-based JIT compilers offer simpler heuristics for optimization (Schilling, 2003). In

exchange, they often require relatively more complex data-flow analysis and Intermediate Rep-

resentation (IR) transformation when compared to trace-based architecture later. As will be

6

explained in the next section, this was one of the reasons why a trace-based approach was

adopted by CPython, as will be discussed further below.

3.2 Trace-based

Originally introduced by Dynamo in 2000 (Bala, Duesterwald, & Banerjia, 2000), trace-based

compilation involves first producing traces of instructions in “hot” regions of code. Traces are

straight-line code sequences without any branching. They can be thought of as a single large

basic block. These traces may contain side exit or “deopt” (deoptimization) points, where the

optimised code may fall back to an interpreter depending on certain conditions. To handle, for

example, deoptimization due to polymorphic types, side exits can lead to another trace. This

means traces eventually form a tree of traces (Gal & Franz, 2006).

Common targets for traces include loops and function entries, as seen in TraceMonkey

(FireFox’s previous JIT compiler), and LuaJIT 2 (a JIT compiler and runtime for Lua).

As traces are a single large basic block, performing static analysis on them is relatively eas-

ier than method-based. Simpler Intermediate Representations (IR) can be used as well. Trace

trees as a result have the reputation of being easier to implement initially than method-based

JIT compilers (Gal & Franz, 2006). Unfortunately, handling advanced language constructs is

one pitfall of trace trees. Trace trees have trouble handling recursion, as seen in TraceMon-

key (Mandelin,) , and generators, as seen in PyPy (though PyPy uses meta-tracing , a slightly

different flavour) [information obtained from personal correspondence with CF Bolz-Tereick,

one of the authors of PyPy].

This was the approach CPython adopted prior to our work on this project. The ease of

simplicity of trace analysis is one of the reasons listed by the lead engineer on the Faster CPython

team for the adoption of traces (and more generally, trace trees) back in 2022 (Shannon, 2022).

Ultimately, the choice of using trace trees in CPython was likely influenced by the size of

the development team. At the time of the choice being made, there were only 3 or 4 full time

engineers working on the tracing JIT compiler. This means maintainability and simplicity likely

influenced heavily in the decision.

7

3.3 Basic-Block at a Time Compilation

Basic-Block at a Time compilation (also termed, tracelets) has existed for dynamic binary

translators for a while, and was used in PHP by HHVM (Adams, Evans, Maher, Ottoni, Paroski,

Simmers, Smith, & Yamauchi, 2014) with a paper published in 2014. Tracelets bear similarity

to trace trees. The main difference is that each tracelet is a smaller region of optimization than

the usual traces as the tracelets end when the “JIT needs type information” (Ottoni, 2016) or

the “JIT can’t infer the direction that will be taken [for a branch instruction]” (Ottoni, 2016)

, and each tracelet is specialised for a specific set of types, and has guards inserted at the start

to guard preconditions in the tracelets. Tracelets are thus labelled as a type-specialised basic

block in the paper.

Tracelets share largely the same positives as trace trees (namely, the ease of implementation),

while having additional negatives. As observed by the team at Facebook themselves, tracelets

were noted to be too small of a compilation unit to perform more complex optimisations.

Certain optimisations like loop-invariant code motion, or redundancy elimination benefit from

larger compilation units (Ottoni, 2016).

Tracelets were also noted to frequently require jumping in and out of machine code execution,

incurring some overhead (Ottoni, 2016). Lastly, tracelets are unable “to use common compiler

infrastructure” (Adams et al., 2014) like LLVM (Lattner & Adve, 2004), due to the unorthodox

compilation unit.

The lack of optimization opportunities is one of the reasons why the traces formed by

CPython are larger than a single HHVM tracelet.

3.4 Meta-tracing

Meta-tracing (Bolz, Cuni, Fijalkowski, & Rigo, 2009) adopts the same ideas of trace-based

compilation. However, it is termed “meta” because instead of tracing user code, meta-tracing

traces the interpreter (Bolz et al., 2009). This process is not automatic, requiring some “hints”

(additions) to the executing interpreter itself to inform the tracing interpreter (Bolz et al., 2009).

8

The most popular runtimes using this approach that we are aware of is PyPy—an alternative

Python interpreter and JIT compiler written in Python itself.

Meta-tracing shares largely the same positives as trace trees, as it is based on the same ideas.

In addition, meta-tracing promises significantly better performance than plain trace-trees (Bolz

et al., 2009). Meta-tracing suffers the same pitfalls as standard trace-trees (namely: recursion

and generators are more complex to handle).

In addition, meta-tracing and tracing in general have been shown to be amenable to allo-

cation removal (Bolz, Cuni, FijaBkowski, Leuschel, Pedroni, & Rigo, 2011). Our own corre-

spondence with Carl Friedrich Bolz, the main author of PyPy, indicates that object creation is

generalised across most types in PyPy. Due to the meta-tracing approach, the allocation of a

boxed integer, or boxed float, is no different from allocation of an object. Removing allocation

of objects in the meta-tracing approach thus automatically leads to unboxed integers and un-

boxed floats. Due to the simpler control-flow of traces, escape analysis, which is usually quite

a complex data-flow analysis, can also be performed more aggressively, and remove allocation

of more objects.

In our work in CPython, we plan to use the ease of escape analysis in traces to our benefit,

and perform aggressive allocation removal and partial evaluation of traces. This is documented

below in another section on our efforts and future plans.

Once again, maintainability likely affected the decision to not use meta-tracing. Other

factors such as memory usage and long warmup likely was also taken into account. CPython’s

current architecture uses a Copy and Patch compiler which is targeted for CPython bytecode.

This approach allows automatically generating a baseline JIT compiler (Xu & Kjolstad, 2020)

without much maintenance overhead. For meta-tracing, it is unknown if the Copy and Patch

approach can work well. From observation of PyPy, meta-tracing usually requires a custom

assembler, intermediate representation, and separate tracing interpreter. All of which require

significant developer effort. While meta-tracing promises high performance and multi-language

support, these are not the only goals CPython maintainers wants. Multi-language support is

especially not required in CPython’s scenario.

9

3.5 Lazy basic block versioning

Lazy basic block versioning is a technique first published in 2014-2015 by Chevalier-Boisvert

and Feeley (Chevalier-Boisvert & Feeley, 2015). It is similar to tracelets, in that the region of

optimization is a single basic block. The key difference between traelets and lazy basic block

versioning is that code generation in the latter is lazy. Code generation is triggered by branches

that point to stubs that generate more code. Code generation only continues up till the end

of a basic block, e.g. a branch or jump. Whether each branch is taken or not taken, is only

determined at run time. Thus code generation is fully driven by the execution of these branches

and is lazy. This also means that no region selection algorithm is needed, as it is implicitly

decided by the lazy basic block generation.

Lazy basic block versioning promises competitive performance with other baseline JIT com-

pilers. It is the architecture of Ruby’s YJIT, which has delivered over a 50% geometric mean

speedup in their benchmarks over the CRuby 3.2 interpreter (Chevalier-Boisvert & Patterson,

2023).

The negatives of lazy basic block versioning is similar to tracelets—regions of optimisations

are small. Thus this restricts optimisations that require larger regions of code at once to operate

on. This was one of the reasons (Shannon, 2023) lazy basic block versioning was not chosen,

as inferred from our conversations with the lead of the Faster CPython team. However, the

approach CPython has chosen does bear some similarity with lazy basic block versioning, as

explained below later.

3.6 Partial Evaluating Interpreters

In the paper “One VM to rule them all” (Würthinger, Wimmer, Wöß, Stadler, Duboscq, Humer,

Richards, Simon, & Wolczko, 2013), the authors describe Truffle, a Domain Specific Language

(DSL) for building language runtimes on top of Graal, an optimising runtime written in Java.

The key idea presented in the paper is that an AST interpreter with self-rewriting nodes can

specialise themselves based on type information. These self-rewriting nodes can also profile and

10

gain runtime information. Using these runtime information, Graal specialises these nodes and

applies partial evaluation. The runtime information gained is especially helpful for the partial

evaluation as it provides more static information to the algorithm.

CPython’s approach is partly inspired by the partial evaluation done in Graal. In this

report, we also implement a simple partial evaluation algorithm that can minimally remove

some function frame structures. Our approach similarly learns from Graal’s approach by using

runtime profiling information to augment partial evaluation.

3.7 The CPython Virtual Machine

CPython is the reference implementation for the Python language. It is mainly an interpreter

combined with an experimental JIT compiler since version 3.13.

CPython’s interpreter currently uses two possible modes of implementation. 1. A switch-

case interpreter, and 2. A threaded-code (Bell, 1973) interpreter using a popular compiler

extension known as labels as values

Switch-case interpreter Switch-case interpreters implement interpreters in a straightfor-
ward fashion. Since C switch-cases are supported universally in most C compilers, this provides
a portable way to write interpreters for many architectures. The interpreter itself is a C switch-
case over all possible instructions, with the following form:

switch(*ip) {
case INSTRUCTION_1:

// Subroutines.
ip++;
break;

case INSTRUCTION_2:
// Subroutines.
ip++;
break;

...
}

Threaded code interpreter Threaded code interpreters implement interpreters with either
an indirect or direct jump at the end of the instruction body (Bell, 1973). On older architec-
tures, this provides a performance benefit, due to better jump prediction and less instructions
needed to dispatch (Ertl, 1993). CPython implements threading via a GNU Compiler Collec-
tion (GCC) (GCC, ndb) extension known as labels as values (GCC, nda). This extension
is also available in the Clang compiler (Clang, ndb). Unfortunately, some compilers such as
the Microsoft Visual C Compiler do not support this extension. Therefore, the threaded code
interpreter is only available on some CPython platforms. The extension allows for C labels to
be treated as addresses in C code, thus allowing for jumping to the instruction handler directly:

void *DISPATCH_TABLE = {&&INSTRUCTION_1, &&INSTRUCTION_2, ...};

11

goto *DISPATCH_TABLE[*ip];
INSTRUCTION_1:

// Subroutines.
ip++;
goto *DISPATCH_TABLE[*ip];

INSTRUCTION_2:
// Subroutines.
ip++;
goto *DISPATCH_TABLE[*ip];

...

Frames in CPython CPython frames are activation records used for function calls and

generators. CPython frames are pushed and popped on every function activation and return.

CPython frames are implemented via a C structure. Unlike Python Object structures, CPython

frames are not reference counted. They are thus not Python objects. Each CPython frame

contains the necessary information for execution of the function, such as the globals and builtins

namespace, the local variables, etc. CPython frames are allocated from a bump allocator, which

reuses space from previous allocations of other frames. CPython frame creation is thus cheap,

but the cost is non-zero. We attempt to eliminate the cost of frame initialization and allocation

later on.

CPython’s Stack Machine CPython’s interpreter as of the time of writing uses a stack

machine. This means operands to operations are implicitly on the stack.

CPython’s Tracing JIT Compiler CPython’s JIT compiler is trace-based. Unlike usual

tracing which records execution, it projects traces. This means CPython tries to predict exe-

cution flow, and where it cannot predict at all, it gives and ends the trace there. The trace

of bytecode is then lowered to a lower representation called microops or uops. These uops are

then compiled to machine code via a technique called Copy and Patch (Xu & Kjolstad, 2020).

Superinstructions/Supernodes Superinstructions refer to combining interpreter instruc-

tions together to form bigger instructions, often reducing their dispatch overhead as a re-

sult (Casey, Ertl, & Gregg, 2007). In the Copy and Patch paper, Xu and Kjolstad term su-

perinstructions that are slated for Copy and Patch compilation as supernodes. Superinstructions

12

remove the cost of dispatching the instruction between adjacent instructions, and also allow the

compiler to optimize a large region of code at once.

CPython’s Bytecode Domain Specific Language (DSL) . CPython has a bytecode DSL

which allow it to express bytecode instructions. The DSL looks like this:

replicate(8) pure inst(LOAD_FAST, (-- value)) {
assert(!PyStackRef_IsNull(GETLOCAL(oparg)));
value = PyStackRef_DUP(GETLOCAL(oparg));

}

replicate(8) pure are instruction properties. They represent additional properties about

the instruction that might be useful for later parts. instmeans this is an interpreter instruction.

The LOAD FAST is the name of the instruction itself. -- value is the stack effect. Everything

on the left of -- is input to be read from the operand stack, everything on the right of it is

output written to the operand stack. In this case, this says the LOAD FAST instruction does not

read anything from the operand stack, and loads a value onto the operand stack. Everything

inside the braces is the actual C-like code for the instruction’s behaviour.

13

Chapter 4

Exploring optimisations for CPython

We implement multiple optimisations to improve CPython’s performance. Some are more well-

known than others. We try a tail calling interpreter, partial evaluation of traces, tracing function

entry- points in the JIT compiler, a method JIT compiler for CPython, a baseline JIT compiler

for CPython and superinstructions/supernodes for CPython’s JIT compiler.

4.1 Tail Calling Interpreter

Code at branch: https://github.com/python/cpython/pull/128718

Tail calls are when a function application occurs at the end of a function’s control-flow (Steele,

1977). Steele (1977) showed that tail calls can be implemented as gotos in programming lan-

guages. This insight is critical to our proposed optimization. This experiment gains the most

impressive results as will be shown later.

4.1.1 Implementation

The main problem with the switch-case and threaded code interpreter the lack of control over

which variables to put into registers. Certain variables are always used by the interpreter

and would benefit from always being in registers. However, CPython relies on the compiler’s

register allocation algorithm to determine this. This could also be achieved with inline assembly.

However, note once again CPython’s maintainability concerns and the multitude of platforms

14

it supports. The second problem with CPython’s current interpreter is its code size. The

generated interpreter is over 12000 lines of C code (Python, nda). According to experience

from Mike Pall, the author of LuaJIT 2, such large interpreters with complex control flow are

hard for the compiler to optimise (Pall, 2011). As will be shown later in the evaluation section,

the size of the interpreter also exposes multiple bugs in mainstream compilers that make the

interpreter harder to optimise.

Design To address the above mentioned problems, we add a third form of interpreters to

CPython—a tail calling interpreter. This allows each instruction handler to be seen as a single

function by an optimizing compiler. Thus fixing the problem of complex control flow graphs

pointed out by Mike Pall (2011). The technique in its current form for C compilers, to our

knowledge, was first popularly used in Protobuf (Haberman, 2021). Clang version 19 and GCC

15 introduces a new compiler attribute guaranteeing proper tail calls (Clang, nda) in the form

of [[clang::musttail]]. This guarantees recursive C function calls do not have unbounded

stack growth. Thus, it is feasible to implement interpreters in the following form:

1 funcptr[] DISPATCH_TABLE = {INSTRUCTION_1, INSTRUCTION_2, ...};
2

3 void INSTRUCTION_1(int *ip, ...) {
4 // Subroutines.
5 ip++;
6 [[clang::musttail]]
7 return DISPATCH_TABLE[*ip](ip, ...);
8 }
9

10 void INSTRUCTION_2(int *ip, ...) {
11 // Subroutines.
12 ip++;
13 [[clang::musttail]]
14 return DISPATCH_TABLE[*ip](ip, ...);
15 }
16 ...

The main drawback of this technique is that for non-tail calls, Clang 19 spills many reg-

isters to the stack. However, this is later solved by Haberman and Haoran Xu by using a

newly introduced Clang 19 calling convention called preserve none (fanf2, nd) in the form of

attribute ((preserve none)). Combined together, the final code looks like this:

1 funcptr[] DISPATCH_TABLE = {INSTRUCTION_1, INSTRUCTION_2, ...};
2

3 __attribute__((preserve_none))

15

4 void INSTRUCTION_1(int *ip, ...) {
5 // Subroutines.
6 ip++;
7 [[clang::musttail]]
8 return DISPATCH_TABLE[*ip](ip, ...);
9 }

10

11 __attribute__((preserve_none))
12 void INSTRUCTION_2(int *ip, ...) {
13 // Subroutines.
14 ip++;
15 [[clang::musttail]]
16 return DISPATCH_TABLE[*ip](ip, ...);
17 }
18 ...

preserve none also allows for more function arguments to be passed in registers. This

allows for control over which variables are to always be in registers across the entire interpreter,

without needing to use inline assembly. The functions’ arguments usually correspond to the

registers and the most frequently used variables by the interpreter.

CPython’s interpreter generator currently generates the switch-case and threaded code inter-

preter. Due to CPython expressing its interpreter through a DSL, we are able to automatically

generate these tail calling instruction handlers with minimal modification to CPython’s inter-

preter source code by using macros in C.

CPython also contains error labels in the form:

1 switch(*ip) {
2 case INSTRUCTION_1:
3 int err = subroutine();
4 if (err) {
5 goto error;
6 }
7 ip++;
8 break;
9 ...

10 }
11

12 error:
13 // Error subroutine.
14 ...

This posed another challenge for us, as keeping instruction handlers efficient requires keeping

infrequently executed code out of the path of normal code execution, due to CPU instruction

caches. Naively copying the error subroutines into tail call instruction handler bodies would

bloat up the instruction sizes. We overcome this by also automatically generating the error

labels in the tail call form, then tail calling to the error handlers when an error is detected.

16

1

2 funcptr[] DISPATCH_TABLE = {INSTRUCTION_1, INSTRUCTION_2, ...};
3

4 __attribute__((preserve_none))
5 void INSTRUCTION_1(int *ip, ...) {
6 int err = subroutine();
7 if (err) {
8 [[clang::musttail]]
9 return ERROR(ip, ...);

10 }
11 ip++;
12 [[clang::musttail]]
13 return DISPATCH_TABLE[*ip](ip, ...);
14 }
15

16 __attribute__((preserve_none))
17 void ERROR(int *ip, ...) {
18 // Error subroutine
19 }

The code generation uses pre-existing tools available in CPython. First, it lexes and parses

the C source code provided in CPython’s DSL. An example instruction in and label in the DSL

looks like this:

1 inst(LOAD_FAST, (-- value)) {
2 assert(!PyStackRef_IsNull(GETLOCAL(oparg)));
3 value = PyStackRef_DUP(GETLOCAL(oparg));
4 }
5

6 label(pop_1_error) {
7 STACK_SHRINK(1);
8 goto error;
9 }

After lexing and parsing the instruction, the instruction header is then converted to TARGET()

C macro which expands to a C function prototype, while instruction exit is converted to a

DISPATCH() macro which expands to a tail call. The label header is converted to a LABEL which

is either an actual C label for the switch-case/threaded code interpreter, or a tail call function

prototype for the tail calling interpreter. JUMP TO LABEL is similar to DISPATCH.

1 // Interpreter setup (switch-case or tail calling)
2 TARGET(LOAD_FAST) {
3 #if Py_TAIL_CALL_INTERP
4 int opcode = LOAD_FAST;
5 (void)(opcode);
6 #endif
7 frame->instr_ptr = next_instr;
8 next_instr += 1;
9 INSTRUCTION_STATS(LOAD_FAST);

10 _PyStackRef value;
11 assert(!PyStackRef_IsNull(GETLOCAL(oparg)));

17

12 value = PyStackRef_DUP(GETLOCAL(oparg));
13 stack_pointer[0] = value;
14 stack_pointer += 1;
15 assert(WITHIN_STACK_BOUNDS());
16 DISPATCH();
17 }
18 // Interpreter setup end
19

20 // Labels start
21 LABEL(pop_1_error)
22 {
23 STACK_SHRINK(1);
24 JUMP_TO_LABEL(error);
25 }
26 // Labels end

Note that these macros allow the same code to represent multiple interpreter implemen-

tations. This has obvious maintainability benefits that will be expanded on in our evaluation

section.

4.2 Partial Evaluation of Traces

Code at branch: https://github.com/Fidget-Spinner/cpython/tree/partial evaluator 2 inlined

Partial evaluation involves partially evaluating a program with respect to all known static

information, producing a residual program that is often faster (Jones, 1996).

4.2.1 Implementation

As previously stated, CPython requires pushing and popping frames on every function activation

and return. Frame removal via partial evaluation aims to remove the initialization and allocation

cost of a CPython frame altogether.

Design We implement partial evaluation via a traditional dataflow analysis/abstract inter-

pretation pass over bytecode instructions in the CPython JIT compiler. This involves creating

a static-dynamic split of variables and their instructions via binding-time analysis (Horwitz,

nd). The algorithm implemented roughly follows the one at (Horwitz, nd).

We also represent the abstract domain of Python’s tuples as well to support future opti-

mization on removing tuple allocation.

The program residual is roughly created as follows: instructions which all inputs are static

18

and are non-escaping (will not call out to arbitrary Python code) are eliminated. Instructions

which have side-effects are always created, and their inputs materialised and treated as dynamic.

Currently, the only instructions annotated with the proper dynamic/static information are

those for frame creation (for function inlining) and tuple creation. All other instructions assume

their values and output are dynamic.

Motivating Example Suppose we have the following useless call in Python code:

def nothing():
pass

nothing()

This produces a call sequence of uops when traced:

1 //... truncated for illustration
2 _CHECK_PEP_523
3 _CHECK_FUNCTION_VERSION
4 _CHECK_FUNCTION_EXACT_ARGS
5 _CHECK_STACK_SPACE
6 _INIT_CALL_PY_EXACT_ARGS
7 _SAVE_RETURN_OFFSET
8 _PUSH_FRAME
9 //... truncated for illustration

Which simply means: do a few checks that CPython can execute the call, then INIT CALL PY EXACT ARGS

initializes and allocates a CPython frame.

This is the code in CPython’s interpreter Domain Specific Language (DSL) handling the

INIT CALL PY EXACT ARGS instruction:

1 op(_INIT_CALL_PY_EXACT_ARGS,
2 callable[1], self_or_null[1], args[oparg] -- new_frame
3) {
4 int argcount = oparg;
5

6 PyCodeObject *co = NULL;
7 assert((this_instr + 2)->opcode == _PUSH_FRAME);
8 co = get_code_with_logging((this_instr + 2));
9 // ...Truncated for illustration purposes...

10

11 _Py_UopsPESlot temp;
12 // Materialize inputs, but not the frame creation instruction!
13 materialize(self_or_null);
14 materialize(callable);
15 for (int x = 0; x < argcount; x++) {
16 materialize(&args[x]);
17 }
18 // If we can statically know whether self_or_null is NULL or
19 // an object intance, then we can inline the frame.

19

20 if (sym_is_null(self_or_null) || sym_is_not_null(self_or_null)) {
21 ...
22 // Note: we do not materialize the instruction here.
23 }
24 else {
25 ...
26 // Not statically known, cannot inline.
27 MATERIALIZE_INST();
28 }
29 new_frame = temp;
30 }

Note that CPython’s JIT compiler only knows the actual Python function or code object we

are using to create the frame because CPython’s interpreter embeds runtime information in the

bytecode. This is similar to Graal. Without the runtime profiling, the function being invoked at

runtime cannot be statically determined because namespaces and function objects themselves

are mutable in Python. Furthermore, we only know if the function is a method and uses the

self object at runtime. However, due to static analysis of the uops and runtime profiling, we

can determine that at JIT compilation time.

4.3 Improving JIT Compilation by Tracing Function Entry Points

Code at branch: https://github.com/Fidget-Spinner/cpython/tree/trace function entry

As stated earlier in the background section, CPython currently has a trace-based JIT com-

piler as an experimental feature. Current profiling results from the Microsoft CPython per-

formance engineering team suggests that only a small portion of execution time is spent in

executing JIT compiled code (Figure 4.1). Speeding up CPython’s JIT compiler execution

times therefore requires first increasing the proportion of time spent in JIT compiled code,

rather than in the interpreter.

Design To increase execution time spent in JIT compiled code, we propose also creating

traces from function entry points, rather than just the backward edge of loops. This idea is

not a new one, and has been implemented by both PyPy and LuaJIT 2. The key design choice

however is fine-tuning the parameters for such tracing.

Firstly, through private correspondence with PyPy core developer CF Bolz-Tereick, we learnt

20

Figure 4.1: Portion of time spent in executing various parts of CPython for benchmarks (Part

1). Credits to CPython performance engineering team at Microsoft for this chart

21

Figure 4.2: Portion of time spent in executing various parts of CPython for benchmarks (Part

2). Credits to CPython performance engineering team at Microsoft for this chart

22

that PyPy sets a function entry count roughly 60% higher than its backward edge warmup

counters (PyPy, 2024). This means it takes 60% more function invocations than loop iterations

to trigger compilation of a trace starting from a function entry point.

Secondly, recursive functions can be handled through looping back to the start. In other

words, for a recursive function that eventually calls itself, transform the function to a backward

jump into itself. This automatically produces an iterative-like version of recursive function calls,

thus improving recursive traces.

Thirdly, short traces need to be discarded and not compiled. We discovered by analysing

assembly code generated by the compiler that entering JIT compiled requires saving and restor-

ing many registers. This is mainly due to a change in the C calling convention. This implies

that the overhead of entering a short trace outweighs the benefit of executing them. We exper-

imentally discovered that the optimal figure to roughly be a trace length of 80 to 100 CPython

micro-operations.

4.4 Method JIT for CPython

Code at branch: https://github.com/Fidget-Spinner/cpython/tree/method jit bench

In our background section, we compared various JIT compilation techniques. A question

that arises is if another technique might better suite CPython. As stated earlier, CPython’s

current JIT architecture uses a trace-based approach. In this experiment, we explore switching

CPython’s JIT compilation to a method-based approach.

4.4.1 Implementation

One problem with trace-based JIT compilers is the requirement of special techniques to handle

irregular control flow. As explained earlier in the background section for other trace-based

approaches, irregular control flow usually causes the trace to terminate early, or require side

exits. This results in frequent switching between the interpreter and JIT compiled code and is a

source of overhead. A method-based JIT compiler avoids this problem altogether by compiling

the method(s) at once, which naturally includes the control-flow of the code. For example, take

23

the following Python code:

def execute(s):
if s:

return 1
else:

return 2

If execute’s branches are heavily biased—that is one branch is executed more frequently,

trace-based JIT compilers can leverage that and compile only the frequently executed branch.

However, consider that many branches in real-world code may not be heavily biased—both

branches might be executed frequently. In that case, the tracing approach must produce a side

trace for the less frequently executed branch. A method-based approach compiles the entire

execute as a single unit, thus avoiding the requirement to produce side exits for execute’s

branches.

Design We implement a method JIT compiler by compiling entire methods once a method

entry point or backward jump executes frequently. We first construct a Control-Flow Graph

(CFG) from CPython bytecode using the algorithm described by (Bernstein, 2022). Possible

basic block entry points are marked by inspecting instructions that branch or jump. Then

consecutive entry points are created as a basic block. After that, we introduce a pass to link up

all the basic blocks by inspecting their terminating instruction. After constructing the CFG, it

is passed to the CPython JIT optimizer.

To support jumping into arbitrary entrypoints in the JIT compiled code, we store an offset

table of instructions to their machine code counterparts. This allows us to jump into JIT

compiled code from the backward edge of a jump for example. The entire CFG building process

does not require allocating any memory, except for once at interpreter startup, as a memory

block is reused between compilations.

4.5 Baseline JIT for CPython

Code at branch: https://github.com/Fidget-Spinner/cpython/tree/baseline jit

24

A baseline JIT compiler is one that does no optimizations apart from translating intermedi-

ate code to machine code. CPython’s JIT compiler’s uops are a source of overhead. Each uop

reads the operand stack and writes to it. Furthermore, as each uop is a smaller compilation

unit for CPython’s JIT compiler, there is less that can be optimized by the machine code gener-

ator. In this section, we thus explore if a baseline JIT compiler that directly compiles bytecode

instead of uops would benefit CPython.

4.5.1 Implementation

The overhead from uops can be removed by directly compiling bytecode instead of uops.

Design Each bytecode is directly compiled to machine code by expressing them as a JIT

compilation template. An interesting implementation point is that the templates are generated

from CPython’s bytecode DSL. CPython’s bytecode DSL allows expressing an instruction as a

composition of multiple smaller uops. Thus, we can generate the original operation using the

constituent uops. For example, the add instruction in CPython looks like this:

macro(BINARY_OP_ADD_INT) =
_GUARD_BOTH_INT + unused/5 + _BINARY_OP_ADD_INT;

Which means the instruction is composed of 2 smaller instructions, GUARD BOTH INT, BINARY OP ADD INT

and 5 unused cache entries. We take this definition and generate the following C code:

1 case BINARY_OP_ADD_INT: {
2 frame->instr_ptr = this_instr;
3 INSTRUCTION_STATS(BINARY_OP_ADD_INT);
4 static_assert(INLINE_CACHE_ENTRIES_BINARY_OP == 5, "incorrect cache size");
5 _PyStackRef left;
6 _PyStackRef right;
7 _PyStackRef res;
8 // _GUARD_BOTH_INT
9 {

10 ...
11 }
12 /* Skip 5 cache entries */
13 // _BINARY_OP_ADD_INT
14 {
15 ...
16 }
17 stack_pointer[-2] = res;
18 stack_pointer += -1;
19 assert(WITHIN_STACK_BOUNDS());
20 break;
21 }

25

Which is then passed to the JIT compiler template generator.

One challenge is that CPython’s currently machine code infrastructure does not allow self-

modifying code or cache entries. To overcome this, we pass a pointer to the original bytecode’s

inline cache entries into the JIT compiled template. This allows the JIT compiled code to read

inline cache entries. Optimization passes are not supported, as this experiment is meant to be

a baseline JIT compiler, not an optimizing one.

4.6 Superinstructions/Supernodes

Code at branch: https://github.com/Fidget-Spinner/cpython/tree/supernodes

CPython’s uop granularity means potential lost optimizations by the JIT compiler’s machine

code generator. To overcome this, we experiment with superinstructions.

4.6.1 Implementation

We introduce a super instruction as such. The following sequence of instructions:

LOAD_FAST x
LOAD_FAST y

might become:

LOAD_FAST__LOAD_FAST (x, y)
PART_OF_A_SUPER // Equivalent to a NOP

Design We create superinstructions automatically by generating permutations of existing

bytecode chained together.

The challenging part of superinstructions is how to match the base instructions to the

superinstruction efficiently. The same sequence of instruction might match multiple superin-

structions. Ideally, we want the match that produces the longest superinstruction, as that

would eliminate the most dispatch overhead. We simplify the problem space by ignoring over-

lapping superinstructions, though in practice this does occur. This thus reduces to a longest

sequence problem. We automatically generate a matcher for the superinstructions by creating

a trie-based matcher based on switch-case statements in C. Each trie node represents a single

26

instruction. Following the trie to a leaf node produces superinstruction. We recursively generate

the C switch- case statements for the trie as such:

1 def traverse_and_write_trie(out: CWriter, trie: Trie, depth: int) -> None:
2 out.emit(f"switch (this_instr[{depth}].opcode) {{\n")
3 for prefix, values in trie.items():
4 if prefix == "self":
5 assert isinstance(values, str)
6 out.emit("default:\n")
7 out.emit(f"*move_forward_by = {depth};\n")
8 out.emit(f"return {values};\n")
9 else:

10 assert isinstance(values, dict)
11 out.emit(f"case {prefix}: {{\n")
12 traverse_and_write_trie(out, values, depth+1)
13 out.emit(f"break;\n")
14 out.emit("}\n")
15 out.emit("}\n")

This produces the following C code (truncated for illustration):

1 int _PyUOp_superuop_matcher(_PyUOpInstruction *this_instr, int *move_forward_by) {
2 switch (this_instr[0].opcode) {
3 case _ITER_CHECK_RANGE: {
4 switch (this_instr[1].opcode) {
5 case _GUARD_NOT_EXHAUSTED_RANGE: {
6 switch (this_instr[2].opcode) {
7 case _ITER_NEXT_RANGE: {
8 switch (this_instr[3].opcode) {
9 default:

10 *move_forward_by = 3;
11 return _ITER_CHECK_RANGE____GUARD_NOT_EXHAUSTED_RANGE____ITER_NEXT_RANGE;
12 }
13 break;
14 }
15 default:
16 *move_forward_by = 2;
17 return _ITER_CHECK_RANGE____GUARD_NOT_EXHAUSTED_RANGE;
18 }
19 break;
20 }
21 }
22 break;
23 }
24 // ...

27

Chapter 5

Evaluation

We critically evaluate our solutions with respect to the 3 components, performance, maintain-

ability, compatibility.

5.1 Experimental Setup

5.1.1 Performance

We have two distinct ways of measuring efficiency/performance. This is due to the limitations

of our current implementation for some experiments.

Microbenchmarks For optimisations that are not yet ready or do not support the whole

CPython runtime, microbenchmarks testing specifically the optimised workload will be used

over large programs, as these optimisations cannot run the whole CPython benchmark suite.

We use hyperfine (Peter, 2023) and run the benchmark 20 times to account for fluctuations. We

conduct a Mann-Whithney U-test (Mann & Whithney, 1947) to measure statistical significance

whe needed. CPython is built in release mode, with Link Time Optimization (LTO), but

without Profile-Guided Optimization (PGO), as for some of the experimental implementations,

not enough of the PGO training set can be run yet. Non-essential Desktop programs are closed

before running benchmarks. An interesting note is that some of our benchmarking machine

processors contain “hybrid cores”. Thus performance is not the same on every physical core.

28

To counter this and for better benchmark reproducibility, we use the taskset utility program

on Ubuntu to pin the benchmark program to the #1 core for reproducibility. The system is

tuned with ‘pyperf system tune‘ which disables Intel Turbo Boost (dynamic frequency scaling),

among other things. This reduces variations between runs on the same system.

pyperformance For optimisations that are ready or support enough of CPython,

pyperformance (Stinner, 2024) is used. pyperformance is the authoritative benchmark suite

for CPython and contains multiple benchmarks ranging from small programs to large libraries.

pyperformance automatically runs each benchmark multiple times, and performs a t-test to

determine significance. CPython is built with LTO and PGO. The benchmarking machine and

results use Microsoft’s Faster CPython team’s infrastructure. This ranges from AArch64 (ARM)

machines to x86 64 machines. However, unless otherwise stated, we will be using the X86 64

results. Note that Microsoft’s pyperformance run excludes benchmarks with higher variability,

such as unpack sequence.

5.1.2 Maintainability

For these experiments, we evaluate arguments along the lines of whether CPython developers

would be familiar with the systems.

5.1.3 Compatibility

We evaluate if the solution breaks backward compatibility either with Python code or the C

API.

5.2 Tail Calling Interpreter

performance The tail calling interpreter initially provided a 9-15% geometric mean speedup

on the pyperformance benchmark suite over the computed goto interpreter. However, it was

found later that this was a result of a Clang 19 bug that worsened the performance of our

baseline. Benchmarking with a fixed Clang 20.1.2 compiler results in a 1.5% overall speedup

29

(Figure 5.1), with speedup ranging up to 7%. These benchmark figures are my own x86 64

system and not from the Microsoft runner as Microsoft’s infrastructure does not have Clang

20 to benchmark this. Furthermore, the unpack sequence benchmark is excluded from the

benchmark list, as it is a known microbenchmark with high variability and is also excluded

from the Microsoft benchmark list. Other Microsoft excluded benchmarks however are included

as we do not run the benchmarks the same number of loops as Microsoft’s runner, and thus

our benchmarks may not suffer the same variability problems. It is also possible that macOS

AArch64 platform might benefit more from this optimisation. However, we do not have a

macOS system available to test this.

More importantly, the tail-calling interpreter represents a more robust way of writing large

complex interpreters. During the course of this project, we have uncovered multiple compiler

bugs that affect CPython’s computed goto interpreter. These bugs arise due to the complexity

and large size of the interpreter. For example, certain versions of Clang 19 and 20 de-duplicate

the computed gotos in CPython 3.14, thus defeating the purpose of the computed goto op-

timisations. GCC 11, 13, 14, are also affected partially by this bug, and spuriously do not

perform optimal register allocation or duplicate computed gotos, when a logically dead store is

removed (Elhage, Gross, & Page, 2025). All of the above mentioned bugs to our knowledge, do

not affect the tail calling interpreter.

Maintainability The tail calling interpreter uses the interpreter generator that has existed

since CPython 3.12 to modify CPython’s interpreter. We further use C macros to only change

the header and footer of each instruction (corresponding to the function prototype and the

function footer). This means the CPython implementers do not require any understanding of

the underlying interpreter implementation mechanism when working on CPython’s bytecode

instructions. We thus propose that the additional maintainer overhead of the tail calling inter-

preter is very low. The tail calling interpreter results in roughly 4% faster compilation for LTO

builds on Clang 20 (Figure 5.3). This represents an improvement in developer productivity, as

faster compilation means less time wasted by the CPython developers waiting for compilation.

30

Figure 5.1: pyperformance relative speedup tail call interpreter versus CPython (Part 1)

31

Figure 5.2: pyperformance relative speedup tail call interpreter versus CPython (Part 1)

32

S
ec

on
ds

0

50

100

150

200

250

Default (Computed Goto) Tail Call

Compilation Time For Full LTO Build

Figure 5.3: Compilation time for full LTO build on different configurations

Compatibility There are no compatibility concerns with the CPython interpreter. This

is purely an internal implementation detail, which means no breakage of Python code, or C

API/ABI.

5.3 Partial Evaluation of Traces

Performance Performance of this optimization is promising in microbenchmarks, but lack-

lustre in macrobenchmarks. For a microbenchmark featuring inlining, we use the following

code:

1 def identity(x):
2 return x
3

4 def func():
5 for i in range(10000000):
6 identity(i)
7 identity(i)
8 identity(i)
9 identity(i)

10 identity(i)
11 identity(i)
12 identity(i)
13 identity(i)
14 identity(i)
15 identity(i)
16 identity(i)
17

18 func()

33

Figure 5.4: Execution times for no inlining versus inlining in CPython’s JIT compiler on a small

test program

We then run the benchmark using hyperfine with 50 iterations and taskset to set task

affinity. For example, the command is taskset -c 1 hyperfine "PYTHON JIT=1 ./python

../bm inlining.py" --export-json ./pe inlining bm spectral norm.json --runs 50.

The results in the above benchmark show a near 2x speedup (Figure 5.4).

For a bigger benchmark, we use the spectral norm benchmark from pyperformance, which

was adapted from the Debian Computer Language Benchmarks Game. This calculates proper-

ties of matrices. The following adaption removes some comments:

1 """
2 MathWorld: "Hundred-Dollar, Hundred-Digit Challenge Problems", Challenge #3.
3 http://mathworld.wolfram.com/Hundred-DollarHundred-DigitChallengeProblems.html
4

5 The Computer Language Benchmarks Game
6 http://benchmarksgame.alioth.debian.org/u64q/spectralnorm-description.html#spectralnorm
7

8 Contributed by Sebastien Loisel

34

9 Fixed by Isaac Gouy
10 Sped up by Josh Goldfoot
11 Dirtily sped up by Simon Descarpentries
12 Concurrency by Jason Stitt
13 """
14

15 DEFAULT_N = 130
16

17

18 def eval_A(i, j):
19 return 1.0 / ((i + j) * (i + j + 1) // 2 + i + 1)
20

21

22 def eval_times_u(func, u):
23 return [func((i, u)) for i in range(len(list(u)))]
24

25

26 def eval_AtA_times_u(u):
27 return eval_times_u(part_At_times_u, eval_times_u(part_A_times_u, u))
28

29 def part_A_times_u(i_u):
30 i, u = i_u
31 partial_sum = 0
32 for j, u_j in enumerate(u):
33 partial_sum += eval_A(i, j) * u_j
34 return partial_sum
35

36

37 def part_At_times_u(i_u):
38 i, u = i_u
39 partial_sum = 0
40

41 for j, u_j in enumerate(u):
42 partial_sum += eval_A(j, i) * u_j
43 return partial_sum
44

45

46 def bench_spectral_norm(loops):
47 range_it = range(loops)
48

49 for _ in range_it:
50 u = [1] * DEFAULT_N
51

52 for dummy in range(10):
53 v = eval_AtA_times_u(u)
54 u = eval_AtA_times_u(v)
55

56 vBv = vv = 0
57

58 for ue, ve in zip(u, v):
59 vBv += ue * ve
60 vv += ve * ve
61

62

63 if __name__ == "__main__":
64 bench_spectral_norm(15)

We see only a small (1.5%) speedup which could be attributed to noise on the system (Figure

5.5). As stated earlier in Figure 4.1, the portion of time spent in JIT compiled code is relatively

35

Figure 5.5: Execution times for no inlining versus inlining in CPython’s JIT compiler on spectral

norm

36

low in CPython. We thus believe that other methods to first increase execution time in JIT

compiled code might be needed before partial evaluation is effective. Examining the spectral

norm benchmark, less than a third of the time is spent executing JIT compiled code. Thus, this

could mean that the JIT compiler requires more work to increase time spent in JIT compiled

code before optimizations are done.

Maintainability The approach is 5000 lines of code for the foundational code. While this

may seem unmaintainable, roughly 3500 lines of code was automatically generated. Leaving

only roughly 1500 lines of handwritten code. Considering that the Python language is large

and this abstract interpreter supports nearly the entire language, this is already considered a

low figure. Furthermore, this uses pre-existing infrastructure to generate and specify abstract

interpreters, as described in our SPLASH ‘24 Student Research Contest paper (Ooi, 2024a).

Most of the code to generate the partial evaluator is shared or copied over from the previous

abstract interpreter that does type analysis. Thus, developers who are familiar with working

on the previous abstract interpreter should find the new abstract interpreter familiar. We thus

propose that this code is maintainable.

Compatibility A full implementation should be compatible with all Python code. However,

due to time constraints, the current partial implementation is not compatible with all Python

code. The main issue is the requirement of frame reconstruction: when exiting an in inlined

frame, the frame must be reconstructed for inlining to be side-effect free in CPython. This

has not yet been fully implemented due to the complexities of the frame structure in CPython.

Namely, unlike interpreters for WebAssembly and the Java Virtual Machine which use two call

stacks (Titzer, 2022), CPython uses a single call stack. This means control structures and

data are both stored on the same stack, causing complications when reconstructing. Further

work could remediate this by splitting the call stack into two, as is already suggested by Mark

Shannon (Shannon, 2024).

37

5.4 Improving JIT Compilation by Tracing Function Entry

Points

Performance pyperformance benchmarks reports no speedup (Figure 5.6) on the x86 64

Linux platforms (courtesy of the Microsoft team). This is likely due to the fact that the JIT

compiler currently does very few optimisations. Thus, executing JIT compiled code is not any

more efficient.

Maintainability This change is minimal and only requires changing two CPython bytecode,

along with some changes to the way CPython projects traces. Again, this is due to CPython

bytecode being able to compose larger instructions from smaller ones. The uop responsible for

JIT compiling a trace is re-used for the function entry uop.

Compatibility There are no compatibility concerns, either in Python code, or the C

API/ABI.

5.5 Method JIT For CPython

Performance Performance of this optimization is disappointing, with an overall slowdown

on the pyperformance benchmark suite 5.8. The worse performing benchmarks richards and

richards super suggests poor handling of method polymorphism in the method JIT compiler

compared to the trace-based compiler. However, this is likely a flaw of our implementation

rather than an inherent design problem with method JIT compilers.

Maintainability The method JIT is currently roughly 600 more lines of C code over the

trace-based JIT. The current implementation is likely unmaintainable, as it requires intricate

knowledge of all branch and jump bytecodes. This tight coupling means if CPython were to

change its branch instructions in the future, the method JIT would need updating. This is

undesirable as it increases the maintainer burden of changing CPython’s bytecode. However,

this could be remedied by using the bytecode DSL to automatically infer and generate jump

38

Figure 5.6: pyperformance relative speedup function entry tracing versus CPython (Part 1).

Credit: Microsoft Faster CPython Team.

39

Figure 5.7: pyperformance relative speedup function entry tracing versus CPython (Part 2).

Credit: Microsoft Faster CPython Team.

40

Figure 5.8: pyperformance relative speedup method JIT compiler versus CPython (Part 1).

Credit: Microsoft Faster CPython Team.

41

Figure 5.9: pyperformance relative speedup method JIT compiler versus CPython (Part 2).

Credit: Microsoft Faster CPython Team.

42

and branch instructions.

Compatibility There are no known compatibility concerns with a method JIT implementa-

tion given enough time and implementation effort. However, the current implementation does

not support CPython’s advanced bytecode introspection features like monitoring (PEP 669).

5.6 Baseline JIT for CPython

Performance Performance of this optimization is disappointing, with an overall slowdown

(Figure 5.10). This likely suggests that a baseline JIT for CPython will not improve efficiency

significantly. The main reason is that CPython already has an inline caching and quicken-

ing interpreter (Shannon, 2021). This interpreter reduces much dynamic typing overhead in

CPython’s runtime, and also reduces the cost of method sends and function calls. This type of

interpreter likely already performs the role of a baseline JIT compiler with minimal optimiza-

tions. The only thing left for the baseline JIT compiler is to remove dispatch overhead.

Maintainability The baseline JIT compiler uses CPython’s bytecode DSL to generate its

template. Which as explained previously, is known by the CPython developers by now. It does

not require additional infrastructure. Thus maintainence burden of a baseline JIT is likely low.

Compatibility There are no known compatibility concerns inherent in the baseline JIT de-

sign, only some bugs in the implementation.

5.7 Superinstructions/Supernodes

Performance Small speedup (1.2%) on the spectral norm benchmark with supernodes versus

no supernodes (Figure 5.12).

The lack of speedup from supernodes is already noted in the original Copy and Patch paper

(Xu & Kjolstad, 2020). Supernodes seems to contribute the lowest performance portion in the

Figure 27 of said paper. Thus, this optimisation does not seem promising.

43

Figure 5.10: pyperformance relative speedup baseline JIT compiler versus CPython (Part 1).

Credit: Microsoft Faster CPython Team.

44

Figure 5.11: pyperformance relative speedup baseline JIT compiler versus CPython (Part 2).

Credit: Microsoft Faster CPython Team.
45

Figure 5.12: Execution times for no supernodes versus supernodes in CPython’s JIT compiler

on spectral norm

46

Maintainability This optimization severely increases the JIT compiler build time. The in-

troduction of superinstructions requires many permutations of common occurring sequences

of instructions. This means more stencils are required to be compiled by the JIT compiler,

therefore increasing build time. This combinatorial explosion severely impacts build time which

affects developer productivity in CPython. On the other hand, most of the code required for

this change is automatically generated. Thus, it is unclear if the benefits outweigh the losses

here.

Compatibility There are no compatibility concerns, either in Python code, or the C

API/ABI. However, there are bugs in the current implementation. These bugs are not inherent

to the concept of superinstructions, rather they are an implementation detail.

47

Chapter 6

Conclusion

In this report, we examined the trilemma facing CPython of efficiency, compatibility, and main-

tainability. We then explored various JIT compilation techniques known for making language

implementations faster. Finally, we experimented with various techniques ranging from tail call-

ing interpreters, to a method-based JIT compiler. We adapt our experiments to the CPython

context by using tools to reduce developer burden, such as bytecode DSLs. Our work has had

a nontrivial impact on the CPython developer community and more.

6.1 Contributions and Impact on the Python/CPython Com-

munity

The following are the significant pull requests merged into CPython:

• https://github.com/python/cpython/pull/129112

• https://github.com/python/cpython/pull/128718

• https://github.com/python/cpython/pull/124846

Multiple smaller pull requests have been merged, but are deemed not significant enough to

be in this report.

The merged pull requests total to roughly 4500 added lines of code, and 1038 removed lines

of code. Most significantly, the most optimistic improvement, the tail calling interpreter, has

48

been merged into CPython.

More than just the lines of code, the performance improvements to CPython have generated

significant community excitement and engagement. The tail calling interpreter has been covered

by InfoWorld and Phoronix (technology news sites), and by Josh Haberman’s blog, a Google

Software Engineer:

• https://blog.reverberate.org/2025/02/10/tail-call-updates.html

• https://www.infoworld.com/article/3820890/a-new-interpreter-in-python-3-14-delivers-a-

free-speed-boost.html

• https://www.phoronix.com/news/Python-3.14-New-Interpreter

• https://realpython.com/python-news-february-2025/#python-314-comes-with-a-new-

type-of-interpreter

Work on the tail calling interpreter is listed as a ”significant feature” Python 3.14 documen-

tation and release notes:

• https://docs.python.org/3.14/whatsnew/3.14.html#whatsnew314-tail-call

• https://www.python.org/downloads/release/python-3140a5/

The implementation of the interpreter has also discovered completely new bugs in GCC,

and rediscovered or reconfirmed old bugs in Clang:

• https://gcc.gnu.org/bugzilla/show bug.cgi?id=118442

• https://gcc.gnu.org/bugzilla/show bug.cgi?id=118430

• https://github.com/llvm/llvm-project/issues/106846

Finding bugs in mature, well-tested projects like GCC or Clang is a surprising positive on

its own.

Finally, this performance work hopes to spark conversation in the CPython community re-

garding its potential for optimization. Indeed, much work has been done by the Faster CPython

49

team at Microsoft, the Python Runtime Team at Meta, and the Free-Threading Team at Quan-

sight. However, as this work shows, much is left to be done.

6.2 Future Work

The partial evaluation algorithm at the moment is unsophisticated and does not perform many

optimisations. In the future, an idealised algorithm would remove allocation of objects as well.

Furthermore, exploring how to effectively combine traces together to form larger optimiza-

tion regions is still an open question when dealing with complex control flow in a language like

Python.

A future optimization might be to combine the idea of basic block versioning and stitching.

This would produce a new trace-based approach that could handle complex control-flow without

the downsides of traditional tracing. This new optimization is an interesting one that we would

like to explore in the future.

50

References

Adams, K., Evans, J., Maher, B., Ottoni, G., Paroski, A., Simmers, B., Smith, E., & Yamauchi,
O. (2014). The hiphop virtual machine. SIGPLAN Not., 49 (10), October, 2014, 777–790.

Aycock, J. (2003). A brief history of just-in-time. ACM Computing Surveys (CSUR), 35 (2),
2003, 97–113.

Bala, V., Duesterwald, E., & Banerjia, S. (2000). Dynamo: a transparent dynamic optimization
system. Proceedings of the ACM SIGPLAN 2000 Conference on Programming Language
Design and Implementation, PLDI ’00 (p. 1–12), New York, NY, USA, 2000: Association
for Computing Machinery.

Bell, J. R. (1973). Threaded code. Commun. ACM, 16 (6), June, 1973, 370–372.

Bernstein, M. (2022). Discovering basic blocks. https://bernsteinbear.com/blog/

discovering-basic-blocks/.

Bernstein, M., & Bolz-Tereick, C. F. (2024). Dr wenowdis: Specializing dynamic language c
extensions using type information. Proceedings of the 13th ACM SIGPLAN International
Workshop on the State Of the Art in Program Analysis, SOAP 2024 (p. 1–8), New York,
NY, USA, 2024: Association for Computing Machinery.

Bolz, C. F., Cuni, A., FijaBkowski, M., Leuschel, M., Pedroni, S., & Rigo, A. (2011). Allocation
removal by partial evaluation in a tracing jit. Proceedings of the 20th ACM SIGPLAN
Workshop on Partial Evaluation and Program Manipulation, PEPM ’11 (p. 43–52), New
York, NY, USA, 2011: Association for Computing Machinery.

Bolz, C. F., Cuni, A., Fijalkowski, M., & Rigo, A. (2009). Tracing the meta-level: Pypy’s
tracing jit compiler. Proceedings of the 4th Workshop on the Implementation, Compilation,
Optimization of Object-Oriented Languages and Programming Systems, ICOOOLPS ’09
(p. 18–25), New York, NY, USA, 2009: Association for Computing Machinery.

Bush, W. R., Samples, A. D., Ungar, D., & Hilfinger, P. N. (1987). Compiling smalltalk-80 to
a risc. SIGOPS Oper. Syst. Rev., 21 (4), October, 1987, 112–116.

Casey, K., Ertl, M. A., & Gregg, D. (2007). Optimizing indirect branch prediction accuracy
in virtual machine interpreters. ACM Trans. Program. Lang. Syst., 29 (6), October, 2007,
37–es.

Chevalier-Boisvert, M., & Feeley, M. (2015). Simple and effective type check removal through
lazy basic block versioning. https://arxiv.org/abs/1411.0352.

51

https://bernsteinbear.com/blog/discovering-basic-blocks/
https://bernsteinbear.com/blog/discovering-basic-blocks/
https://arxiv.org/abs/1411.0352

Chevalier-Boisvert, M., & Patterson, A. (2023). Ruby 3.3’s yjit:
Faster while using less memory. https://railsatscale.com/

2023-12-04-ruby-3-3-s-yjit-faster-while-using-less-memory/.

Clang (nda). Attributes in clang. https://clang.llvm.org/docs/AttributeReference.

html.

Clang (ndb). Clang: a c language family frontend for llvm. https://clang.llvm.org/.

Elhage, N., Gross, S., & Page, M. (2025). computed-goto interpreter: Prevent the compiler
from merging dispatch calls. https://github.com/python/cpython/issues/129987.

Ertl, M. A. (1993). A portable Forth engine. EuroFORTH ’93 conference proceedings,
Mariánské Láznè (Marienbad), 1993.

fanf2 (nd). Hacker news parsing protobuf at 2+gb/s: How i learned to love tail calls in c.
https://news.ycombinator.com/item?id=41289114.

Gal, A., & Franz, M. (2006). Incremental dynamic code generation with trace trees, 2006.

GCC (nda). 6.3 labels as values. https://gcc.gnu.org/onlinedocs/gcc/

Labels-as-Values.html.

GCC (ndb). Gcc, the gnu compiler collection. https://gcc.gnu.org/.

Google (n.d.). What is v8? https://v8.dev/.

Haberman, J. (2021). Parsing protobuf at 2+gb/s: How i learned to love tail calls in c. https:
//blog.reverberate.org/2021/04/21/musttail-efficient-interpreters.html.

Horwitz, S. B. (n.d.). Partial evaluation. https://pages.cs.wisc.edu/~horwitz/

CS704-NOTES/9.PARTIAL-EVALUATION.html.

Instagram (2017). Copy-on-write friendly python garbage collection. https://

instagram-engineering.com/copy-on-write-friendly-python-garbage-collection-ad6ed5233ddf.

Jansen, P. (2025). Tiobe index. https://www.tiobe.com/tiobe-index/. Accessed: 2025-01-
16.

Jones, N. D. (1996). An introduction to partial evaluation. ACM Comput. Surv., 28 (3),
September, 1996, 480–503.

Lattner, C., & Adve, V. (2004). Llvm: A compilation framework for lifelong program analysis
& transformation. Proceedings of the International Symposium on Code Generation and
Optimization: Feedback-Directed and Runtime Optimization, CGO ’04 (p. 75), USA, 2004:
IEEE Computer Society.

Lopuhin, K. (2019). Pypy support. https://github.com/pytorch/pytorch/issues/17835.

Mandelin, D. an overview of tracemonkey. https://hacks.mozilla.org/2009/07/

tracemonkey-overview/.

Mann, H., & Whithney, D. (1947). On a test of whether one of two random variables is
stochastically larger than the other ‘, annuals of mathematical statistics, 18. , 1947.

Meta (n.d.). Cinder. https://github.com/facebookincubator/cinder.

52

https://railsatscale.com/2023-12-04-ruby-3-3-s-yjit-faster-while-using-less-memory/
https://railsatscale.com/2023-12-04-ruby-3-3-s-yjit-faster-while-using-less-memory/
https://clang.llvm.org/docs/AttributeReference.html
https://clang.llvm.org/docs/AttributeReference.html
https://clang.llvm.org/
https://github.com/python/cpython/issues/129987
https://news.ycombinator.com/item?id=41289114
https://gcc.gnu.org/onlinedocs/gcc/Labels-as-Values.html
https://gcc.gnu.org/onlinedocs/gcc/Labels-as-Values.html
https://gcc.gnu.org/
https://v8.dev/
https://blog.reverberate.org/2021/04/21/musttail-efficient-interpreters.html
https://blog.reverberate.org/2021/04/21/musttail-efficient-interpreters.html
https://pages.cs.wisc.edu/~horwitz/CS704-NOTES/9.PARTIAL-EVALUATION.html
https://pages.cs.wisc.edu/~horwitz/CS704-NOTES/9.PARTIAL-EVALUATION.html
https://instagram-engineering.com/copy-on-write-friendly-python-garbage-collection-ad6ed5233ddf
https://instagram-engineering.com/copy-on-write-friendly-python-garbage-collection-ad6ed5233ddf
https://www.tiobe.com/tiobe-index/
https://github.com/pytorch/pytorch/issues/17835
https://hacks.mozilla.org/2009/07/tracemonkey-overview/
https://hacks.mozilla.org/2009/07/tracemonkey-overview/
https://github.com/facebookincubator/cinder

Ooi, K. J. (2024a). Automatically generating an abstract interpretation-based optimizer from
a dsl. Companion Proceedings of the 2024 ACM SIGPLAN International Conference on
Systems, Programming, Languages, and Applications: Software for Humanity, SPLASH
Companion ’24 (p. 28–30), New York, NY, USA, 2024: Association for Computing Ma-
chinery.

Ooi, K. J. (2024b). gh-116291: Tier 2 - true function inlining redux. https://github.com/

python/cpython/pull/116290.

Oracle (n.d.). The hotspot group. https://openjdk.org/groups/hotspot/.

Ottoni, G. (2016). Redesigning the hhvm jit compiler for better performance.
=https://engineering.fb.com/2016/09/22/networking-traffic/redesigning-the-hhvm-
jit-compiler-for-better-performance/.

Pall, M. (2011). Re: Suggestions on implementing an efficient instruction set simulator in
luajit2. http://lua-users.org/lists/lua-l/2011-02/msg00742.html.

Peter, D. (2023). hyperfine. https://github.com/sharkdp/hyperfine.

Peterson, B. (2009). Pep 387 – backwards compatibility policy. https://peps.python.org/
pep-0387/.

PyPy (2024). pypy/rpython/rlib/jit.py. https://github.com/pypy/pypy/blob/

7399efcabd6996373b96f9e512f16a56ff612b53/rpython/rlib/jit.py#L566-L589.

Python (nda). Python/generated cases.c.h. https://github.com/python/cpython/blob/

main/Python/generated_cases.c.h.

Python (n.d.b). sys — system-specific parameters and functions. https://docs.python.org/
3/library/sys.html#sys._getframe.

Schilling, J. L. (2003). The simplest heuristics may be the best in java jit compilers. SIGPLAN
Not., 38 (2), February, 2003, 36–46.

Shannon, M. (2021). Pep 659 – specializing adaptive interpreter. https://peps.python.org/
pep-0659/.

Shannon, M. (2022). Trace-based optimizer. https://github.com/faster-cpython/ideas/
discussions/375.

Shannon, M. (2023). Tier 2 optimizer. https://github.com/faster-cpython/ideas/

issues/557.

Shannon, M. (2024). Use two call stacks instead of one. https://github.com/

faster-cpython/ideas/issues/675.

StackOverflow (2024). Stackoverflow survey. https://survey.stackoverflow.co/2024/

technology. Accessed: 2025-01-16.

Steele, G. L. (1977). Debunking the “expensive procedure call” myth or, procedure call imple-
mentations considered harmful or, lambda: The ultimate goto. Proceedings of the 1977
Annual Conference, ACM ’77 (p. 153–162), New York, NY, USA, 1977: Association for
Computing Machinery.

53

https://github.com/python/cpython/pull/116290
https://github.com/python/cpython/pull/116290
https://openjdk.org/groups/hotspot/
=
http://lua-users.org/lists/lua-l/2011-02/msg00742.html
https://github.com/sharkdp/hyperfine
https://peps.python.org/pep-0387/
https://peps.python.org/pep-0387/
https://github.com/pypy/pypy/blob/7399efcabd6996373b96f9e512f16a56ff612b53/rpython/rlib/jit.py#L566-L589
https://github.com/pypy/pypy/blob/7399efcabd6996373b96f9e512f16a56ff612b53/rpython/rlib/jit.py#L566-L589
https://github.com/python/cpython/blob/main/Python/generated_cases.c.h
https://github.com/python/cpython/blob/main/Python/generated_cases.c.h
https://docs.python.org/3/library/sys.html#sys._getframe
https://docs.python.org/3/library/sys.html#sys._getframe
https://peps.python.org/pep-0659/
https://peps.python.org/pep-0659/
https://github.com/faster-cpython/ideas/discussions/375
https://github.com/faster-cpython/ideas/discussions/375
https://github.com/faster-cpython/ideas/issues/557
https://github.com/faster-cpython/ideas/issues/557
https://github.com/faster-cpython/ideas/issues/675
https://github.com/faster-cpython/ideas/issues/675
https://survey.stackoverflow.co/2024/technology
https://survey.stackoverflow.co/2024/technology

Stinner, V. (2019). Official list of core developers. https://discuss.python.org/t/

official-list-of-core-developers/924.

Stinner, V. (2024). pyperformance. https://pyperformance.readthedocs.io/.

Titzer, B. L. (2022). A fast in-place interpreter for webassembly. Proc. ACM Program. Lang.,
6 (OOPSLA2), October, 2022.

van Rossum, G. (2006). [python-dev] [python-checkins] msi being downloaded 10x more than
all other files?! https://mail.python.org/pipermail/python-dev/2006-December/

070323.html.

Würthinger, T., Wimmer, C., Wöß, A., Stadler, L., Duboscq, G., Humer, C., Richards, G.,
Simon, D., & Wolczko, M. (2013). One vm to rule them all. Proceedings of the 2013 ACM
International Symposium on New Ideas, New Paradigms, and Reflections on Programming
& Software, Onward! 2013 (p. 187–204), New York, NY, USA, 2013: Association for
Computing Machinery.

Xu, H., & Kjolstad, F. (2020). Copy-and-patch binary code generation. CoRR,
abs/2011.13127 , 2020.

Zhang, Q., Xu, L., Zhang, X., & Xu, B. (2022). Quantifying the interpretation overhead of
python. Science of Computer Programming, 215 , 2022, 102759.

54

https://discuss.python.org/t/official-list-of-core-developers/924
https://discuss.python.org/t/official-list-of-core-developers/924
https://pyperformance.readthedocs.io/
https://mail.python.org/pipermail/python-dev/2006-December/070323.html
https://mail.python.org/pipermail/python-dev/2006-December/070323.html

Appendix A

Code

A-1

	Title
	Abstract
	Acknowledgement
	List of Figures
	List of Tables
	Introduction
	Project Objectives

	Background and Challenges
	CPython's Inefficiency
	The C API and Compatibility
	Maintenance Burden Concerns
	The Challenge

	Background: Just-in-Time Compilers and CPython
	Method-based
	Trace-based
	Basic-Block at a Time Compilation
	Meta-tracing
	Lazy basic block versioning
	Partial Evaluating Interpreters
	The CPython Virtual Machine

	Exploring optimisations for CPython
	Tail Calling Interpreter
	Implementation

	Partial Evaluation of Traces
	Implementation

	Improving JIT Compilation by Tracing Function Entry Points
	Method JIT for CPython
	Implementation

	Baseline JIT for CPython
	Implementation

	Superinstructions/Supernodes
	Implementation

	Evaluation
	Experimental Setup
	Performance
	Maintainability
	Compatibility

	Tail Calling Interpreter
	Partial Evaluation of Traces
	Improving JIT Compilation by Tracing Function Entry Points
	Method JIT For CPython
	Baseline JIT for CPython
	Superinstructions/Supernodes

	Conclusion
	Contributions and Impact on the Python/CPython Community
	Future Work

	References
	Code

